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The calculation of non-paired spatial orbitals and alternant molecular orbital wavefunctions 
for the benzyl radical is described. The NPSO and AMO methods give comparable energy lowerings 
which indicate that they make substantial allowance for electron correlation. The calculated spin 
densities are not in very good accord with experiment and it is thought that this reflects inadequacies 
in the integral approximations used. 

1. Introduction 

In a recent paper [1] we have described the extension of the method of non- 
paired spatial orbitals (NPSO) to the ten electron K-systems of naphthalene and 
azulene and compared the NPSO method with the alternant molecular orbital 
(AMO) calculations of Pauncz and his coworkers [2, 3]. Applications of the 
NPSO method to open shell systems have so far been restricted to three electron 
systems [4, 5]. We describe in this paper the application of the method to the 
seven electron ~-system of the benzyl radical. 

The benzyl radical continues to be of great interest to theoretical chemists 
(e.g. [6-8]) on account of the discrepancy between the calculated spin densities 
and the experimental proton hyperfine coupling constants. Suggestions for 
resolving this discrepancy have recently been put forward [7, 8]. 

The AMO method has had limited application to open shell systems and spin 
density calculations. Apart from calculations on the allyl radical [9, 10] and 
trimethylene methyl [11] in which the energies were optimised, the only other 
AMO calculations on such systems seem to be spin density calculations [12, 13] 
in which the AMO parameters were determined by criteria other than minimum 
energy. We therefore performed AMO calculations on the benzyl radical both 
for comparison with the NPSO results and for their intrinsic interest. 

Molecular orbital calculations were also made in order to assess the lowering 
in energy resulting from the use of correlated wavefunctions. 

2. Methods 

a) Molecular Orbital Calculations 

We performed three types of MO calculations. The crudest method used was 
to calculate the eigenvectors of the overlap matrix. This procedure yields the 
Hiickel-Wheland orbitals [16] and is considerably inferior to self-consistent field 
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(SCF) methods. For open shell SCF calculations, one has the choice between the 
restricted Hartree-Fock (RHF) method [14] and the unrestricted Hartree-Fock 
(UHF) method [15] which makes allowance for electron correlation by using 
different orbitals for the ~ and fl electrons. The UHF method has the disadvantage 
that the wavefunction is not a spin eigenfunction. Both methods were used in this 
work. 

A regular geometry was assumed with bond lengths of 1.40 A. Two sets of 
calculations were made using the Ruedenberg method [16] and the Goeppert- 
Mayer Sklar (GMS) [17] method for the calculation of one electron integrals. All 
overlap integrals were included and the two electron integrals were calculated 
from accurate Coulomb integrals by the Mulliken approximation. The integrals 
used are tabulated in the Appendix. 

b) Alternant Molecular Orbital Method 

Calculations were made by the methods described by Pauncz [18] using the 
eigenvectors of the overlap matrix as starting orbitals. If the molecular orbitals 
are denoted ~0~ (i = 1, 2...  7) in order of ascending energy, the alternant molecular 
orbitals ~pj and t-pj (] = 1, 2, 3) are given by 

~j = cos0q)j + sin0~0s_j, (1) 

~j = cos0q)j-  sin0q~a_j, (2) 

where 0 is a parameter which is varied to minimise the energy. It is usual to report 
the optimum value of 0 in terms of a parameter 2 which is, in fact, cos20. ~P4 is 
simply the non-bonding orbital q~4- The wavefunction is then given by 

I[I = 0 D A [ I])11]) 211) 3113 41191~l~ 2 ~) 3] , (3) 

where Oo is a doublet projection operator and A is the antisymmetrizer. Spin 
densities were calculated using the methods of Pauncz [18] and Harris [19]. It 
should be noted that there are typographical errors in Eq. (6.72) of Ref. [18]. The 
correct formula is 

1 
(7Jlfzl 7J) = 2 S +  1 ( -  i)rCriSr[laI(O)[2 

i = i  Lr=0 

- -  lal( 0)2]  - -  2 ( - -  1 ) r + l  C r + l  i S r [ -  2laI(0)l 2 + a * ( 0 )  g~(0) Zi 
r=0  

+~(O)a~(O);ti] + ~ I~(0) l  2 (--1)r(Cr--RCr+l)Sr. 
i=v+ 1 r=O 

(4) 

c) Method of Non-Paired Spatial Orbitals 

Wavefunctions in the NPSO method are constructed by the application of 
symmetry and spin projection operators to a single determinantal wavefunction 
formed by assigning electrons as far as possible to semi-localized bonding orbitals. 
This is done in such a way as to span the bonding regions of the molecule and as 
far as possible so that electrons in adjacent semi-localized bonding orbitals have 
opposite spins. 
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The wavefunctions for the benzyl radical are constructed from the 2p~ orbitals 
Zi located on the carbon atoms. The numbering scheme is shown in the figure 

7 

5M./~3 
4 

Two choices are possible for the initial single determinantal NPSO wave- 
functions for this species, namely: 

Function A 
I//I(A) = A[ (Z l  q- kz2 ) 0~()~3 -31- kz4  ) 0~()~5 -4- kZ6 ) 0r (5) 

()~1 q- kz7)  ~(){2 q- k)~3) fi(Z4 q- k)~5) f10~6 q- k)~l) fi] 
and Function B 

~{B) = A [(Z1 + kz2) a(Z3 + kz4) a(Z5 + kz6) c~ 
(6) 

(kzl + Z.) c4Z2 + kZ3) fi(Z4 + kzs) fi(Z~ + kzl)/3]. 

In these functions k is a parameter to be varied to minimise the energy. 
As discussed in Paper I, a wavefunction transforming as one of the irreducible 

representations of the point group of the molecule may be generated by the 
application of a symmetry projection operator. Applying the operator for the B 2 
representation gives, for function A, the wavefunction 

GA) = [~I(A) + %(A)], (7) 
where 

~I(A) = A [(kz2 + Z3) ~(kZ4 + Zs) ~(kz6 + Zl) (8) 
(Z~ + kZT) ~(kZl + Z2) fi(kz3 + Z4)/~(kz5 + Z6)/~3- 

The wavefunction for function B is derived similarly. 
A doublet wavefunction is generated by applying a doublet projection operator 

OD to wavefunction (7) 

2 ~/(A) ---- OD[(t/I(A) -~- IJ~II(A)] ' (9) 

The difficulties of including full spin projection in the calculation were discussed 
in Paper I. With full spin projection the energy would be given by 

E = ((tP1-4- tPi,) tH [ OD(tP , + ~vn) ) (10) 
<(tp, -4- ~,,) ] OD(~ I + ~YlI)> 

because the spin projection operator is idempotent and commutes with the 
Hamiltonian operator H. The difficulty lies in the calculation of < t/, I HIOD ~'~>. 
We performed four sets of calculations with varying degrees of spin annihilation. 

1. No Spin Projection 
These calculations were made with wavefunction (7). The transformation of 

King et al. [20] was used for the calculation of integrals between individual Slater 
determinants. 
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2. Spin Annihilation 
The quartet component was annihilated from the wavefunction ( ~ +  ~n) 

using the modification of the method of Amos and Hall [21] discussed in Paper I. 
In this approximation 

E= (TtIIHIA'Q Ttl) + (~PIIH[AQ ~II) (11) 
(%[A~%) + ( % [ A ~ I , )  ' 

where A~ represents annihilation of the quartet component. 

3. Partial Spin Projection 
An improvement on method 2 is to use the energy expression 

E= (%IHIOD%>+(%IHIA'Q~n> (12) 
<%[01~ ~I> + <~IIA'o ~II> 

4. Spin Projection in Diagonal Term of Energy Expression 
In view of the fact that methods 2 and 3 involve considerable computation, 

we suggested in Paper I that a reasonable way of doing the calculation would be 
to use the energy expression 

E= (%IHIODg~') + (7~IIHI TJI') 
(13) 

(%1Oo%) +(%1%i> 

We included this method in order to see whether our assertion was true in the case 
of the benzyl radical. In the calculation of the integrals (~I[H[OD~I) and 
(~lHIA'e~gl) the orbitals were first transformed to "corresponding" [21] or 
"paired" orbitals [22] and the formulae of Harris [19] were then used. In the 
integrals (~xlHIA' e ~n), A~ 7"it was expressed as a sum of Slater determinants 
and the method of King et al. [20] was used for each individual integral in the 
expression. 

3. Results 

The results of the energy calculations using both sets of integral approxima- 
tions are given in Table 1. The pattern of the results is roughly the same for both 
methods of calculating the one electron integrals. We examined two different 
integral approximations because in our initial UHF calculations using the 
Ruedenberg method, we obtained unreasonable orbitals although the energy was 
of the correct order. The same behaviour was observed with the GMS integrals. 
The UHF results must therefore be regarded with suspicion. Several possible 
explanations for the anomalous orbitals were considered but did not resolve the 
matter. The SCF program behaved perfectly normally for closed shell calculations 
on naphthalene and azulene [1]. 

The results in Table 1 indicate that NPSO functions of type A are more 
successful in lowering the energy than those of type B. The performance of the 
NPSO method is comparable with that of the AMO method for this system. Both 
methods give substantially lower energies than the RHF method, showing that 
they are effective in allowing for electron correlation. 
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Table 1. Energies for wavefunctions for the benzyl radical 
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Method 

Ruedenberg one 
electron integrals 

Goeppert-Mayer Sklar 
one electron integrals 

Energy (eV) k Energy (eV) k 

Molecular orbitM 
Eigenvectors of overlap matrix - 303.9154 -218.8816 
RHF - 305.6740 -219.8315 
UHF - 308.8357 -223.1363 

Alternant molecular orbital 
method 

NPSO (function A) 
1 

2 

NPSO (function B) 
1 
2 

-308.6701 0.5866 a -223.5855 0.5898 a 

- 308.6047 4.2 - 223.0043 4.99 
- 309.4675 4.83 - 223.8714 5.78 

( - 309.4167 4.0) ( - 223.7067 4.0) 
- 309.5968 4.85 - 223.9927 5.75 

(-309.5413 4 .0)  (-223.8199 4.0) 
- 309.1104 4.87 - 223.5265 5.8 

( - 309.0564 4.0) ( - 223.3551 4.0) 

- 307.5750 0.236 - 222.2996 0.227 
- 308.3498 0.208 - 223.0785 0.2005 

( -  308.3075 0.25) ( - 223.0169 0.25) 
- 308.4520 0.209 - 223.1799 0.20 

(-308.4090 0.25) (-223.1173 0.25) 
- 307.9956 0.205 - 222.7274 0.197 

( - 307.9477 0.25) ( - 222.6590 0.25) 

This value is ,~ = cos20. 

The results for the N P S O  funct ions using methods  2, 3, 4 (energy expressions 
(11-13)) follow the pa t te rn  we observed for naph tha lene  and  azulene and suppor t  
our  suggestion that  calculat ions using energy expression (13) are a reasonable  
approximat ion .  The use of methods  2 and  3 (i.e. with more  complete annih i la t ion  
of the quar te t  component )  produces only a slight improvement  in the energy and  
the value of k changes very little. The op t imum  values for k are also in the region 
of 4 (or 0.25) and  the results for these values show that no serious errors would 
be in t roduced by the assumpt ion  of k = 4 (or 0.25). Thus, the results of our  present  
calculat ions are in accord with the suggestion of Empedocles and Linnet t  [-23]. 
We feel that  we can now write down reasonable  N PSO functions for larger systems 
such as polycyclic a romat ic  hydrocarbons  on the basis of the calculat ions for 
smaller systems [1, 23]. 

The diagonal  elements of the calculated spin density matrices are given in 
Table 2 for the N P S O  funct ion A obta ined  by methods  3 and 4. Func t i on  B gave 
spin densities which were no t  in accord with experiment  and must  therefore be 
rejected. The pa t te rn  of the spin densities calculated by the N P S O  method  is in 
poor  accord with the observed hyperfine coupl ing constants  [24]. The method  
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Table 2. Calculated spin densities for the benzyl radical 

Method 01 02 ~3 04- 07 

RHF 
AMO 
NPSO (function A) 
3 
4 

RHF 
AMO 
NPSO (function A) 
3 
4 
ExperimentaP hyperfine 
coupling constants (gauss) 

a) Ruedenber 9 one electron integrals 

0.006 0.065 0.000 0,030 0.850 
- 0.264 0.451 - 0.270 0.455 0.537 

- 0.589 0.696 - 0.594 0.687 0.709 
- 0.483 0.616 - 0.501 0.604 0.658 

b) Goeppert-Mayer Sklar one electron integrals 

0.002 0.031 0.000 0.014 0.960 
- 0.263 0.450 - 0.269 0.454 0.538 

- 0.619 0.718 - 0.618 0.711 0.722 
-0 .516  0.641 -0 .530  0.631 0.673 

5.14 1.75 6.14 16.35 

" Ref. [-24]. 

grossly overestimates the spin densities on the ring atoms. The RH F  and AMO 
spin densities are also not in very good agreement with experiment. 

There are several possible explanations for the poor results for the spin density 
calculations. The assumption of a regular geometry appears to be an invalid 
assumption [-7, 8] but would not be expected to distort seriously the results. The 
present calculations are the only published calculations on the benzyl radical 
which have used the Ruedenberg or the GMS one electron integrals and included 
all the two electron integrals. It would appear that these approximations do not 
yield good results for spin density calculations. The omission of full spin projection 
may be a reason for the poor  performance of the NPSO method. This neglect 
seems to have only a small effect on the energy but may have a more profound 
effect on the spin density distribution. 

4. Conclusion 

The calculations presented in this paper indicate that the use of NPSO wave- 
functions for the benzyl radical leads to considerably lower energies than those 
given by molecular orbital methods which do not allow for electron correlation. 
Using one adjustable parameter, the NPSO and AMO methods give comparable 
lowerings. Although on the energy criterion the NPSO method seems to be 
successful in allowing for electron correlation, the calculated spin densities are in 
poor  accord with experiment. On the basis of our calculations it seems that the 
use of the Ruedenberg and GMS methods for one electron integrals and the use of 
theoretical values for Coulomb integrals is much less successful than the use of 
semi-empirical methods [6]. 
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Appendix 

T a b l e  3 c o n t a i n s  t h e  i n t e g r a l  v a l u e s  u s e d  i n  t h e s e  c a l c u l a t i o n s .  T h e  o r b i t a l  

e x p o n e n t s  f o r  t h e  c a r b o n  a t o m  w e r e  t h o s e  q u o t e d  b y  R u e d e n b e r g  [ 1 6 ] .  

Table 3 

One electron integral (eV) 

Overlap Coulomb Ruedenberg GMS 
integral integral (eV) approximation approximation 

11 1.0 17.227026 -70.476281 -56.533172 
22 1.0 17.227026 -64.635252 -52.514399 
33 1.0 17.227026 -62.783655 -50.654663 
44 1.0 17.227026 -62.351705 - 50.220483 
77 1.0 17.227026 -53.508749 -43.192025 
12 0.246821 9.028474 - 18.248177 - 15.286945 
13 0.034704 5.651135 - 2.011101 - 2.011578 
14 0.015452 4.949867 - 0.892108 - 0.892315 
37 0.001934 3.799537 - 0.100433 - 0.100458 
47 0.000585 3.367587 - 0.030258 - 0.030260 
17 -17.179095 - t4 .217767  
23 - 17.602871 - 14.641567 
24 - 1.945002 - 1.945453 
25 - 0.869352 - 0.869559 
26 - 1.984626 - 1.985087 
27 - 1.834309 - 1.834756 
34 - 17.321058 - 14.359686 
35 - 1.920368 - 1.920836 
36 - 0.869352 - 0.869559 
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